State-to-state dynamics of high-n Rydberg H-atom scattering with H2: inelastic scattering and reactive scattering.

نویسندگان

  • Shengrui Yu
  • Shu Su
  • Dongxu Dai
  • Kaijun Yuan
  • Xueming Yang
چکیده

The state-to-state dynamics of high-n Rydberg H-atom scattering with para-H2 at the collision energies of 0.45 and 1.07 eV have been studied using the H-atom Rydberg tagging time-of-flight technique. Both the inelastic scattering and reactive scattering are observed in the experimental time-of-flight spectra. The products H2(v', j' = odd) come only from reactive scattering and present clearly forward-backward asymmetric angular distributions, which differ from those of the corresponding ion-molecule reaction. The products H2(v', j' = even), however, come from both reactive scattering and inelastic scattering. Simulating the rotational distribution from reactive scattering, we found that most of the H2(v', j' = even) products come from inelastic scattering. The angular distributions of the product H2(v', j' = even) are consistent with what is predicted by the conventional textbook mechanism of inelastic scattering, and are a little different from those of the corresponding ion-molecule inelastic scattering. These results suggest that the effect of Rydberg electron could not be neglected in describing the differential cross sections of H* + para-H2 scattering. From the simulation, the branching ratios of the inelastic scattering channel were determined to be 66% and 79% at the collision energies of 0.45 and 1.07 eV, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State-to-state dynamics of high-n Rydberg H-atom scattering with D2.

Full quantum-state resolved scattering of a highly excited Rydberg H atom with D2 has been carried out using the Rydberg H-atom time-of-flight method. A detailed analysis of the experimental results shows that both inelastic and reactive scatterings are significant in the Hn-D2 collisions, and nuclear spin is conserved in the inelastic scattering process. The differential cross sections for the...

متن کامل

Reactive scattering dynamics of rotational wavepackets: a case study using the model H+H2 and F+H2 reactions with aligned and anti-aligned H2.

We propose a method to steer the outcome of reactive atom-diatom scattering, using rotational wavepackets excited by strong non-resonant laser pulses. Full close-coupled quantum mechanical scattering calculations of the D+H2 and F+H2 reactions are presented, where the H2 molecule exists as a coherent superposition of rotational states. The nuclear spin selective control over the molecular bond ...

متن کامل

ابررساناهای دمای بالا- با دید نوترونها

  Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC). Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are ess...

متن کامل

Experimental characterization of singlet scattering channels in long-range Rydberg molecules.

We observe the formation of long-range Cs2 Rydberg molecules consisting of a Rydberg and a ground-state atom by photoassociation spectroscopy in an ultracold Cs gas near 6s1/2(F=3,4)→np3/2 resonances (n=26-34). The spectra reveal two types of molecular states recently predicted by D. A. Anderson, S. A. Miller, and G. Raithel [Phys. Rev. A 90, 062518 (2014)]: states bound purely by triplet s-wav...

متن کامل

Giant Cross Section for Molecular Ion Formation in Ultracold Rydberg Gases.

We have studied the associative ionization of a Rydberg atom and a ground-state atom in an ultracold Rydberg gas. The measured scattering cross section is 3 orders of magnitude larger than the geometrical size of the produced molecule. This giant enhancement of the reaction kinetics is due to an efficient directed mass transport which is accelerated by the Rydberg electron. We also find that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 15  شماره 

صفحات  -

تاریخ انتشار 2015